METHODS OF CLASSIFICATION OF ELECTROENCEPHALOGRAM DATA FOR IDENTIFICATION OF ABSTRACT SYMBOLS PERCEPTION
Keywords:
electroencephalogram, signal classification, clusterAbstract
The developed methods for classifying electroencephalograms (EEGs) make it possible to detect brain responses to abstract stimuli, which form the basis for building brain-computer interface systems. The result of signal classification is the assignment of a test EEG to a corresponding cluster that represents a specific visual figure.
References
Mridha M.F., Das S.C., Kabir M.M., Lima A.A., Islam M.R., Watanobe Y. Brain-computer interface: advancement and challenges // Sensors. – 2021. – Vol. 21. – Article № 5746. – DOI: 10.3390/s21175746.
Novitasari D.C.R., Suwanto, Bisri M.H., Asyhar A.H. Classification of EEG signals using fast Fourier transform (FFT) and adaptive neuro-fuzzy inference system (ANFIS) // Mantik. – 2019. – Т. 5, № 1. – С. 35–44. – DOI: 10.15642/mantik.2019.5.1.35-44.