CLUSTERING-BASED PARAMETERS FOR DETECTION OF KEYWORDS IN NATURAL TEXTS WITH CORRECTIONS ON RANDOM TEXTS
Keywords:
computer lunguistics, keyword detection, artificial intelligence, clasteri, clusteringAbstract
Clustering-based methods are efficient in detection of keywords in natural texts. Here we present a technique for correcting the appropriate word-relevance parameters with the data obtained for random texts and simulate the dependences of those parameters on the absolute and relative word-token frequencies.
References
M. Ortuño, P. Carpena, P. Bernaola-Galván, E. Muñoz, A. M. Somoza, Europhys. Lett., 57, 759 (2002).
J. P. Herrera, P. A. Pury, Eur. Phys. J. B, 63, 135 (2008).
H. Zhou, G. W. Slater, Physica A, 329, 309 (2003).
P. Carpena, P. Bernaola-Galván, M. Hackenberg, A. V. Coronado, J. L. Oliver, Phys. Rev. E, 79, 035102(R) (2009).
P. Carpena, P. A. Bernaola-Galván, C. Carretero-Campos, A. V. Coronado, Phys. Rev. E, 94, 052302 (2016).