IMPLEMENTATION OF NEURAL NETWORK METHODS FOR SHORT-TERM FORECASTING OF PRICE MOVEMENTS IN FINANCIAL MARKETS

Authors

  • Roman Pavlenko National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
  • Yuliia Pavlenko Lesya Ukrainka Volyn National University https://orcid.org/0000-0002-4065-045X

Abstract

This study addresses the problem of short-term forecasting of order book dynamics for a financial instrument using full L2 data. Instead of traditional time series with simple numerical features, the approach relies on sequences of structured order book snapshots, each capturing market depth across 100 price levels. To facilitate this, a custom data collection tool was developed based on the BookmapAPI, enabling automatic generation of training samples with corresponding target variables, including maximum, minimum, and final bid and ask prices over a defined prediction horizon.

References

Harris L. TradingandExchanges: MarketMicrostructureforPractitioners. NewYork, NY : Oxford University Press, 2003. 656 p.

Cont R., Kukanov A. Optimal Order Placement in Limit Order Markets. Taylor&Francis. 2017.

Субботін С. Нейронні мережі: теорія та практика : навч. посіб. Житомир : О.О. Євенок, 2020. 184 с.

Géron A. Hands-On Machine Learning with Scikit-Learn, Keras&TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. 2nd ed. Sebastopol, CA : O’ReillyMedia, 2019. 856 p.

Bookmap API | Bookmap Knowledge Base. Bookmap: Online-Plattformfür Live-Tradingvon Aktienund Futures. URL: https://bookmap.com/knowledgebase/docs/API.

Published

2025-06-03