COMPREHENSIVE METHODOLOGY FOR ASSESSING THE EFFECTIVENESS OF THE DISTANCE LEARNING SYSTEM

Authors

Keywords:

methodology, efficiency, distance learning, quality indicator

Abstract

The current pace of development of information technologies has created conditions for a wide range of tools for providing educational services using distance learning technologies. Confirmation of this is the activation of the use of distance learning systems in the conditions of sanitary and epidemiological restrictions and martial law. The existing scientific and methodological framework for researching the quality of the functioning of distance learning systems is mostly based on approaches to separate evaluation of the effectiveness of their components and relevant quality indicators. This limits the opportunities to take into account significant factors in the process of making relevant decisions and requires a comprehensive consideration of the contributions of relevant subsystems to the results of the functioning of the distance learning system. To address this issue, the article presents a comprehensive methodology for evaluating the effectiveness of the functioning of a distance learning system based on probability theory and the analysis of hierarchies. The methodology describes the patterns of the impact of the importance level and contributions of its subsystems on the effectiveness indicator of the distance learning system. The using of the mentioned methodology enables the prediction of the results of the joint functioning of the relevant subsystems of the distance learning system, taking into account their contribution to the overall result.

References

Don M. Africa, Ara Jyllian A. Abello, Zendrel G. Gacuya, Isaiah Kyle A. Naco, Victor Antonio R. Valdes. Face Recognition Using MATLAB. International Journal of Advanced Trends in Computer Science and Engineering. 2019. Vol. 8, № 4. July-August. рр. 1110 – 1116.

Ara Jullion A. Abello, Gabriele Francesca Y., Domingo, Maria Jamelina T. Joven, Samanta Alexis S. Malubay. Power Measurement Model Optimizationusing using MATLAB. International Journal of Advanced Trends in Computer Science and Engineering. 2019. Vol. 8, № 3, May – June. рр. 538 – 542.

Бакіко В.М., Попович П.В., Швайченко В.Б.. Визначення завадостійкості каналу зв’язку за випадкового впливу завад. Вісник НТУ “ХПІ” : зб. наук. пр. Харків : НТУ “ХПІ”, 2018. № 14 (1290). сс. 7 – 10.

Churyumov G., Tokarev V., Tkachov V., Partyka S. Scenario of Interaction of the Mobile Technical Objects in the Process of Transmission of Data Streams in Conditions of Impacting the Powerful Electromagnetic Field. 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP). 2125 Aug. 2018. P. 183 – 186.

Fedorov E., Alrababah H., Nehad A. The distribution for mation method of reference patterns of vocal speech sounds. International Journal of Advanced Trends in Computer Science and Engineering. 2017. Vol. 6 (3), May - June, рр. 35 – 39.

Kulikov G.V., Nesterov A.V., Lelyuh A.A. Pomehoustoychivost priema signalov s kvadraturnoy amplitudnoy manipulyatsiey v prisutstvii garmonicheskoy pomehi. Zhurnal radioelektroniki, № 11, 2018, рр. 41 – 49.

Laptіev О.A., Barabash O.V., Savchenko V.V., Savchenko V.A., Sobchuk V.V. The method of searching for digital means of illegal reception of information in information systems in the working range of Wi-Fi.

International Journal of Advanced Research in Science, Engineering and Technology. Indiа. 2019. Vol. 6, Issue 7. Р. 10101 – 10105.

Laptiev O., ShuklinG., Savchenko V., Barabash O., MusienkoA., Haidur H. The Method of Hidden Transmitters Detection based on the Differential Transformation Model.. International Journal of Advanced Trends in Computer Science and Engineering. 2019. Vol. 8, №6, November- December. рр. 538 – 542.

Laptiev O.A., Polovinkin I.M, Klyukovskiy D.V., Barabash A.O. Model poshuku zasobiv neglasnogo otrimannya informatsiyi na osnovi diferentsialnyh peretvoren. Sciences of Europe. Praha, Czech Republic. 2019. Vol. 1. No 43. рр. 59 – 62.

Пархоменко А.Н.,Штоцький Б.І.. Перешкодостійкість типового тракту при виявленні сигналів з флуктаційною амплітудою. Міжнародний науково-технічний журнал. [Електронний ресурс] Режим доступу: http://radio.kpi.ua/article/view/S002134701982040219.

Qualifying Requirements QR-160D (2004). Environmental Conditions and Test Procedures for Airborne Equipment, ARIAC. 2004.

Serkov O. Breslavets V., Tolkachov M., Kravets V. Method of coding information distributed by wireless communication lines under conditions of interference. Advanced Information Systems. 2018. Vol. 2, No. 2.

рр. 145 – 148.

Swets J. A Signal detection theory and ROC analysis in psychology and diagnostics: Collected papers. Psychology Press, 2014. SDR аnd CR Boost Wireless Communications Електронний ресурс] Режим доступу: http://www.electronicdesign.com

Weber C., Peter M., Felhauer T. Automatic modulation classification technique for radio monitoring .Electronics Letters. 2015. Т. 51. №. 10. С. 794-796.

Bezruk V.M, Chebotareva D.V., Skorik Yu.V. Multicriteria analysis and selection of telecommunications facilities. Kharkov: SMIT. 2017. 267 p.

Published

2023-05-22

How to Cite

[1]
Laptev, O. and Hryshanovych, T. 2023. COMPREHENSIVE METHODOLOGY FOR ASSESSING THE EFFECTIVENESS OF THE DISTANCE LEARNING SYSTEM. Applied Problems of Computer Science, Security and Mathematics. 1 (May 2023), 63–75.